

 MOFIA 2.2
MANUAL

May 6, 2002

Maher Quraan

September 15, 2003 1

I. INTRODUCTION... 3

II. SOURCE CODE ORGANIZATION... 5

III. CVS.. 6

IV. INSTALLING AND COMPILING MOFIA.. 8

IV.1 COMPILING MOFIA .. 8
IV.2 COMPILING A DEBUG VERSION .. 9
IV.3 MODULE DEPENDENCIES ... 9

V. RUNNING MOFIA.. 10

V.1 GENERAL COMMANDS .. 10
V.2 FLAGS ... 11
V.3 NAMELISTS ... 12
V.4 FUNCTIONS ... 13
V.5 ENVIRONMENT VARIABLES ... 14

VI. CALIBRATION FILE MANAGER (CFM) .. 15

VII. INITIALIZATION BRANCH ... 18

VII.1 GEOMETRY... 18
VII.2 HISTOGRAMMING ... 23

VIII. ANALYSIS BRANCH .. 27

VIII.1 TDC UNPACKING ... 28
VIII.2 FILTERING... 32
VIII.3 CROSS TALK ... 32
VIII.4 CALIBRATIONS.. 33

VIII.4.1 Efficiency ... 33
VIII.4.2 Time Zero... 34
VIII.4.3 Alignments ... 34

VIII.4.3.1 Translational Alignments... 35
VIII.4.3.2 Rotational Alignments ... 35

VIII.4.4 Resolution.. 35
VIII.5 PATTERN RECOGNITION.. 37
VIII.6 TRACKING... 37

VIII.6.1 χ2 Fit .. 37
VIII.6.2 Kalman Filter .. 37

X. APPENDECIES ... 38

X.1 NAMELIST VARIABLES.. 38
X.2 FAILURE CODES .. 45

X.2.1 Event Filtering Failure Codes... 45
X.2.2 Pattern recognition Failure Codes.. 46
X.2.3 χ2 Fit Failure codes .. 47
X.2.4 Kalman Filtering Failure Codes ... 47

September 15, 2003 2

X.3 DATA STRUCTURES... 48
X.3.1 Geometry Structures.. 48
X.3.2 TDC Structures.. 50
X.3.3 Calibrations Structures ... 52
X.3.4 Windowing Structures ... 53
X.3.5 Clustering Structures... 54
X.3.6 First Guess Structures ... 55
X.3.7χ2 Helix Fit Structures.. 56
X.3.8 Kalman Filter Structures... 57
X.3.9 MC Banks Structures.. 58
X.3.9 MC Banks Structures.. 59

X.4 FLOWCHARTS.. 60
X.4.1 Initialization Branch.. 60
X.4.2 Analysis Branch... 61

September 15, 2003 3

I. Introduction
he framework of MOFIA has been adapted from KOFIA, the software package
developed for BNL experiment E787. The first version, MOFIA 1.0 contains the code
used to analyze the test data acquired with 5 x-planes and 2 y-planes in the test run of

August 1997. MOFIA 1.0 contains a full software analysis package of this test data, including:
calibrations, efficiency and tracking. The second version, MOFIA 1.5, includes a “skeleton”
that would allow the user to access the Monte Carlo data for purposes of developing the
remaining software packages for TWIST. Both MOFIA 1.0 and MOFIA 1.5 are written in
FORTRAN 77. Since then the collaboration have decided to adopt a more modern language,
FORTRAN 90, due to many attractive features in this language. This lead to the development
of MOFIA 2.0. Since FORTRAN 90 compilers are able to compile FORTRAN 77 code, we
decided to keep as much as we can of the MOFIA main framework code (the code adapted
from E787) in FORTRAN 77. This was mainly done for two reasons: first, the code adapted
from E787 is well written and tested so that changing it will unnecessarily consume too much
manpower; and second, compatibility with E787 is desired since it will allow us to benefit
from E787 modifications to the code. For the same reasons, we decided not to modify any of
the other packages that we adapted, namely: CFM, YBOS, GPLOT, BRU and CERN
libraries. On the ALPHA, these packages are compiled using the f77 compiler. On LINUX,
however, it was necessary to recompile them with f90, due to incompatibilities between our
compiler of choice for LINUX f90, ABSOFT, and the g77 compiler. Only minor changes,
however, were made to these packages.

All the TWIST code written for MOFIA 1.5 was completely rewritten and reorganized in
MOFIA 2.0 in order to utilize the nice features of FORTRAN 90, including the data
structures. MOFIA 2.0 also includes the geometry structures and the TDC unpacking for the
proportional chambers. In addition, MOFIA 2.0 is capable of analyzing the test data of August
1999, for the UV prototype chamber pair. This last feature allowed us to test MOFIA 2.0 with
real data and compare directly the results from MOFIA 2.0 and MOFIA 1.5. While the
collaboration has initially decided to support four computer platforms, only the LINUX and
ALPHA platforms have been used since the release of MOFIA 2.0. While the TWIST cluster
will consist entirely of LINUX boxes, the continuing support of the ALPHA platform is
considered beneficial since it might reveal code (or even compiler) bugs that may otherwise
go undetected by the LINUX ABSOFT compiler. MOFIA 2.0 has been tested on ALPHA and
LINUX, and the analysis results from both Monte Carlo and real data were identical.

Since then another version, MOFIA 2.1, has been released but the MOFIA 2.0 manual has
not been updated to reflect the modifications in that version. This manual will be entirely
focused on the current version, MOFIA 2.2.

In the discussion below, some knowledge of FORTRAN 90 is assumed. We found that the
book “Upgrading to FORTRAN 90” by Cooper Redwine provides a good introduction to

T

September 15, 2003 4

FORTRAN 90, at least for those familiar with FORTRAN 77. Specific documents for the
ALPHA and the ABSOFT compilers and debuggers are also useful references. For ABSOFT,
this documentation may be found on any machine where ABSOFT is installed in the directory
/usr/absoft/doc. In particular, the file FxUserGuide.pdf provides information on the ABSOFT
Fx multi-language debugger, and the file F90_Reference.pdf provides information on the
FORTRAN 90 compiler. Information on our debugger of choice for the ALPHA, ladebug, is
on the web at

http://www.compaq.com/products/software/ladebug

and information on DEC FORTRAN 90 is at

http://www.triumf.ca/internal/internal-links/df90/dfau.htm

September 15, 2003 5

II. Source Code Organization
he source code for MOFIA 2.2 is in the directory ~username/mofia/2.2/source.
Several subdirectories reside in it: main, mainf90, dummy, include, modules, photo,
and user. The subdirectory main contains the MOFIA “mainframe” code (adapted

from E787); this is the part that was not changed and is still in FORTRAN 77 format. Code in
this directory has the extension .F and is compiled with the f90 compiler as FORTRAN 90
fixed format code. The subdirectory mainf90 contains the TWIST main analysis code. This
subdirectory will also contain other software packages once they are developed and tested. In
contrast, code that is still under development and testing, as well as utility code that is
regularly modified by many users will reside in the user subdirectory. The code in the
mainf90 and user subdirectories carries the extension .f90 and is therefore compiled with the
f90 compiler as FORTRAN 90 free format code. The photo subdirectory includes the code
needed for the ROOT package (event display) which is written in C++. The photo directory
also contains some FORTRAN subroutines to provide the link between the MOFIA
FORTRAN code and the event display C++ code. The include subdirectory includes all the
include files, common blocks, parameter files, and interface blocks. For convenience, the
environment variables MOFIA_SOURCE, MOFIA_DUMMY, MOFIA_MAIN,
MOFIA_MAINf90, MOFIA_PHOTO and MOFIA_USER are set to point to the source
directory and its subdirectories. For example, the command

 cd $MOFIA_USER

puts the user in the directory .../source/user

When a module is compiled, the compilation process goes through two steps: first a file
with extension .mod is created and then the .o file is created. The .mod file resides in the
modules subdirectory. These .mod files are needed when other modules that USE them are
compiled to enforce type checking on all procedure calls. Finally, the subdirectory dummy
contains “dummy” modules and subroutines. These modules serve two purposes. First, for
purposes of testing (or convenience) a certain part of the code might not be required. This is
achieved by calling the equivalent dummy subroutine to replace the actual package. Second,
the use of dummy modules provides a way to simplify the compiling and linking process
when interdependencies between modules in different subdirectories are present. The dummy
subdirectory also contains dummy subroutines for user specific code such as my_begin_run,
my_end_run, my_init, etc. When the user needs to modify these subroutines, they should be
copied to the user subdirectory, modified, and added explicitly to the Makefile (in the user
subdirectory). The compiler will first look for these files in the user subdirectory, if the
specified files are not present, the compiler will find the .o files in .../lib/libdummy.a and link
with them instead.

T

September 15, 2003 6

III. CVS
CVS is the version control system used for the TWIST software. CVS allows us to save the
different versions of a source file, tag the source code to create a version of MOFIA when
desired, and keep track of differences between the different versions of a file, as well as
differences between files in the user’s development directories and those in the CVS
repository. The contents of the TWIST CVS code can be viewed on the web at

http://e614db.triumf.ca/cgi-bin/cvsweb.cgi

A detailed discussion of CVS as well as a detailed description of its commands may be found
in the CVS manual. The following is a short list of the most commonly used CVS commands
for easy reference.

The command

cvs checkout argument

may be used to checkout a file or a directory. It may also be used with qualifiers to specify the
version number of the code to be checked out and the directory it should be placed in. For
example, the command

cvs checkout -d 2.2 –r MOFIA-2-2 mofia

will create a subdirectory called “2.2” and place revision “MOFIA-2-2” of the “mofia” code
inside it. This code will include all the directories of the MOFIA source code and their
contents.

The command

cvs status filename

displays the status of a specific file. If the filename is omitted the status of all the files in the
directory in which the command is entered are displayed. The user might often wish to check
the status of only the files that differ from CVS in that particular directory. In this case the
command

cvs status | grep –i need

is handy. This will pipe the cvs status command through the grep command to search for the
files that need to be updated or committed (see below).

cvs update filename

This command allows the user to update their source code with new code from CVS. When
no filename is specified, code in the entire directory in which the command is issued will be
updated. If the user has modified files in his/her own directory, the CVS code will be merged
with the user’s code. In some cases conflicts may occur in which case CVS will prompt the

September 15, 2003 7

user. In such cases the user has to edit the file and resolve the conflicts by hand. Conflict
sections are labeled by CVS with a “>>>>” and “<<<<”. Care must therefore be taken when
using this command. In some cases users may want to save their modified files under a
different name before updating from CVS in case they need to check differences, etc. The cvs
update command lists the filenames in which differences are found as well as the code that
differs for the user to make comparisons. It is often convenient to only list the filenames
containing differences only (without displaying any code). This is achieved by using a
qualifier

cvs update --brief

Notice that there are two “-“ signs preceding “brief”!

The Command

 cvs commit filename

Is used to commit files to the CVS repository. The command will prompt the user to type in a
description of the modifications made to the file. The editor defined by the environment
variable CVSEDITOR is invoked for this purpose. The user may therefore find it handy to set
this environment variable to his/her editor of choice in their own .login file. For example to
have CVS invoke the emacs editor when using the cvs commit command, the following line
would be needed to be entered prior to using the commit command (or better yet added to the
user’s own .login file)

setenv CVSEDITOR emacs

The cvs commit command will only allow the user to commit files that already exist in the
CVS repository. If the a new file is to be added to the repository the command

cvs add filename

Should precede the cvs commit command.

Files may also be removed from the CVS repository using the command

cvs remove filename

Followed by

cvs commit filename

All the above commands are best understood when they are tried.

The CVS manual may be found on the web at

http://

September 15, 2003 8

IV. Installing and Compiling MOFIA
ll the MOFIA source code as well the setup files are committed to cvs. In order to
have access to CVS, the user needs to be a member of the e614cvs group. This allows
the user to checkout the MOFIA code. Detailed step–by-step instructions on installing

MOFIA are posted on the web at

http://e614db.triumf.ca/~e614/triumf/doc/install.html

IV.1 Compiling MOFIA
ach of the subdirectories: main, mainf90, dummy, and photo has its own Makefile.
When the make file is executed, a library corresponding to this subdirectory is created
(or updated) and placed in the directory mofia/2.2/lib. The corresponding libraries are

libmain.a, libmainf90.a, libdummy.a, and libphoto.a. Notice that the include files used by
code in any of these subdirectories resides in the include subdirectory, and similarly the .mod
files created when compiling code in any of these subdirectories resides in the modules
subdirectory. In contrast, when the Makefile in the user subdirectory is executed, the .mod and
.o files remain in the user subdirectory (no libraries are created).

Scripts are available to build MOFIA. These may be found in the directory

…/e614soft/triumf/mofia/2.2

for the MOFIA 2.2 version. In particular, the script make_all allows the user to build MOFIA
from scratch. To do so, simply execute the command

make_all

Once MOFIA is built from scratch once, the user will only need to execute the make
command in the directory where modifications have been made and the subsequent directories
(which contain code that depends on these modifications). Often, the user will be modifying
code only in the user subdirectory in which case only code in the user subdirectory needs to
be compiled.

When compiling MOFIA (in the user subdirectory) the user has the option of making any
of three different executables: plain, mofia or photo. The first executable, plain, does not
contain any code from the mainf90, user, or photo subdirectories. The second executable,
mofia, contains all of the MOFIA code except for the event display (photo subdirectory). The
last executable, photo, contains the entire code. To make any of these three executables the
user needs to issue the command “gmake executable” where “executable” stands for plain,
mofia or photo. For example,

make photo

makes the photo executable. If only the gmake command is issued (with no executable name)
all three: plain, mofia and photo will be made and placed in the user subdirectory.

A

E

September 15, 2003 9

IV.2 Compiling a debug Version
he libraries corresponding to main, mainf90, dummy and photo in mofia/2.2/lib are all
compiled with the debug flag off to allow faster execution. Since debug information
may be needed at times, a debug version of all these libraries is provided in the

subdirectory mofia/2.2/debug. The default libraries are the non-debug ones, so that the
environment variable MOFIA_LIBDIR is assigned to mofia/2.2/lib by default, and the debug
flag is turned off when the code in the user subdirectory is compiled. To compile a debug
version of MOFIA the user needs to issue the command

mlib f90 debug
Before compiling. This will assign the environment variable MOFIA_LIBDIR to
mofia/2.2/debug and turn the debug flag on when compiling the mymofia code. If the user
wishes to go back and recompile a non-debug version, the command

mlib f90
must be issued before executing the Makefile.

IV.3 Module Dependencies
t would be inefficient to recompile all the code whenever a file is modified in one of the
source subdirectories. On the other hand, compiling only the file modified will not be
sufficient in some cases since other files might depend on it. For example, if module A is

changed, one needs to find all the modules and procedures that USE module A and recompile
them. This is also true when any of the include files is changed. In each of the subdirectories
main, mainf90, dummy and photo, a file called Dependencies is supplied to serve this
purpose. This file contains a list of modules and includes files that a .o file “depends on” so
that if any of these files is changed the .f90 (or .F) file corresponding to this .o file is
recompiled. This information is made available by inserting the statement “include Dependencies” in
every Makefile in the source subdirectories.

The Dependencies file itself is created by executing the script depend_f90.csh (which
resides in the directory defined by the environment variable TRIUMF_ROOT) from the
source subdirectory in which the dependencies are to be found. This script goes through every
file in this subdirectory and extracts all filenames that this file depends on (by examining all
the USE and INCLUDE statements in that file).

It is important to remember that the list of object files in the Makefile has to be constructed
in such a way so that the dependent files come after those they depend on.

Problems are sometimes encountered when compiling code only in a specific MOFIA
subdirectory. While the origin of these compiling problems is not understood, it is found to be
related to file dependency issues. If the user runs into compiling problems or runtime errors
after only compiling code in a specific MOFIA subdirectory, the user can try to rebuild
MOFIA from scratch using the make_all command discussed above.

T

I

September 15, 2003 10

V. Running MOFIA
s mentioned in the introduction, the framework for MOFIA was not changed from the
previous versions. The commands in this section are therefore identical to previous
versions of MOFIA.

V.1 General Commands
MTIN “argument”: Assigns the input file/device to argument. For example,

MOFIA> MTIN "/ralph1/usr/data8/TWIST/data/run00092.dat"

assigns the input file to run00092.dat in directory /ralph1/usr/data8/TWIST/data.
Similarly, the command

MOFIA> MTIN "/dev/mx3d"

assigns the input to the tape drive /dev/mx3d.

analyze “argument”: Starts the analysis process. The number of events to be
analyzed may be used as an argument; for example

MOFIA> analyze 1000

analyzes 1000 events. If no argument is specified the entire file will be analyzed.

event “argument”: Moves FORWARD to the event specified and analyze it. For
example

MOFIA> event 237

moves forward to event 237 and analyzes it.

show “argument”: Shows the current contents of the argument. For example

MOFIA> show MTIN

shows the name of the file/device that MTIN is assigned to. If no argument is provided, a
listing of possible arguments is displayed.

@filename: Executes the command file specified by filename. Command files may
include any MOFIA command that may be otherwise issued at the MOFIA command
line. If the file extension is not specified the extension .kcm is assumed. Command files
may also be nested (so that a command file may call another) up to 10 layers deep. For
more information on command (.kcm) files please see the NAMELISTS section below.

show fail: prints out statistics showing the number of events failing a given event filter.

exit: Exit MOFIA.
help: Run the MOFIA help facility.

A

September 15, 2003 11

V.2 Flags

everal flags have been installed in MOFIA. To view these flags type show flags at
the MOFIA command line.

MOFIA> show flags

 MOFIA FLAGS:

 BPRINT = OFF
 PHOTO_FLAG = OFF
 SKIM = OFF

 DECODE TRACK CUTS
 DC OFF OFF OFF
 PC OFF OFF OFF
 SC OFF OFF OFF
 AP OFF OFF OFF
 AS OFF OFF OFF
 PU OFF OFF OFF

The set command is used to change the contents of these flags. For example, to turn on
the PHOTO_FLAG type set photo on at the MOFIA command line. To turn on the
decoding for the DC detector subsystem type set dc on. To turn on the tracking and/or the
cuts, a qualifier following the subsystem name is needed. For example to turn on the cuts
for the DC subsystem type set dc/cuts on. Currently six subsystems are defined in
MOFIA: (DC) drift chamber, (PC) proportional chamber, (SC) scintillators, (AP)
proportional chambers ADCs, (AS) scintillator ADCs, and (PU) pulsars. Each subsystem
is a CHARACTER(LEN=2). The command show subsystems allows the user to see the
defined subsystems

MOFIA> show subsystems

 There are 6 defined Sub-Systems

 Index Code Description

 1 DC Drift Chambers
 2 PC Proportional Chambers
 3 SC Scintillators
 4 AP ADC for PCs
 5 AS ADC for SCs
 6 PU Pulsers

S

September 15, 2003 12

V.3 Namelists

everal namelists have been installed in MOFIA. The following commands are used
to access these namelists.

show namelist “argument”: Shows the namelist and its description. If no argument is
provided all namelists and their descriptions are shown. If an argument is provided the
contents of the namelist specified by the argument are shown as well as their respective
description and default settings. For example

MOFIA> show namelist DCCUTS
shows the contents of the namelist DCCUTS.

namelist “argument”: Accesses the namelist specified by argument for purposes of
checking and/or modifying the current settings. Invoking this command puts the user
inside the namelist editor. Once inside the editor, the user may check the current values
of the namelist by entering “?”, exit the editor by entering “&”, or change the value of a
namelist variable by entering “variable = value”. Below is an example:

 MOFIA> name DCSET
 Enter Drift Chamber SETtingings:
 ?
 &NLDCSET
 FIRSTPLANEDC = 1,
 LASTPLANEDC = 44,
 /
 LASTPLANEDC = 22
 &
 MOFIA>

While these commands may be typed in interactively (on the MOFIA command line), it is
more convenient to have them in a command file so that the user can execute the appropriate
command file (which contains the appropriate settings, flags, cuts, as well as pointers to the
appropriate calibration files) for the desired analysis. Five sample files are provided (and may
be checked out from the ../source/user directory in CVS). The file helix.kcm contains settings
appropriate for analyzing data with the magnetic field on, while str8.kcm contains field off
settings. The files helix_mc.kcm and str8_mc.kcm contain the corresponding settings for
analyzing Monte Carlo data. The file eff.kcm contains appropriate settings for computing the
intrinsic efficiency of the chamber from straight tracks. To execute any of these files type
@filename at the MOFIA command line. The commands in the file will show up on the
screen and will also be saved to the log file mofialog.dat.

Command files used to analyze MC data (such as helix_mc.kcm) should have the two
namelist variables MonteCarlo and UnpackMC in the namelist GLOBAL set to true.
Calibration files to be used in analyzing MC data should also be specified in these

S

September 15, 2003 13

command files, since CFM is not currently used to handle calibration files in the Monte
Carlo.

V.4 Functions
everal functions have also been installed in MOFIA The command: func
“argument” allows the user to execute these functions. For example executing the
command func 6 prints out the drift and proportional chambers geometry files. If

no argument is provided a listing of all functions and their descriptions is provided.
Table 1 contains a list of all the functions currently available:

Function Description

1 Turn ON printing for list of wire hits

2 Turn OFF printing for list of wire hits

3 Turn ON printing for tdcunp debugging

4 Turn OFF printing for tdcunp debugging

6 Print DC and PC geometry files

9 Reset all histograms

10 Initialize cross talk counters

11 Print cross talk counters

12 Print efficiency counters

13 Print residuals

14 Initialize efficiency counters

20 Determine and output time zero

Table 1. A list of functions available in MOFIA.

S

September 15, 2003 14

V.5 Environment variables

nvironment variables may also be assigned before executing MOFIA. Two
convenient environment variables that come in handy for MOFIA are worth
mentioning here: MTIN which specifies the input file/device as explained above,

and MHIST which specifies the directory to which the hbook histograms should be
written. If MHIST is not specified, the hbook histograms will be written to the current
directory in which MOFIA is running. Some environment variables may be best to assign
through the .login file. If multiple users are sharing the same account and wish to have
their own definitions of environment variables, a file of the form .user (where user stands
for the user name) would be handy. Each user would then have to source .user before running
MOFIA.

When MOFIA is run, a log file is created with the default filename mofialog.dat and is
written to the same directory in which MOFIA is running. The user may wish to change
this default and can do so by assigning the environment variable MOFIALOG to the
desired filename (which may include a directory name if the user wishes to write the log
file to a different directory). This is particularly useful when the user wishes to save the
log file, since otherwise this file will be overwritten the next time MOFIA is run.

The environment variable MOFIA_INIT provides yet another handy tool. When this
variable is assigned to a MOFIA command file (for example, helix.kcm) MOFIA will
automatically execute this file upon entering. It is therefore handy for the user to assign
this variable to a command file that contains the user customized settings.

E

September 15, 2003 15

VI. Calibration File Manager (CFM)
TWIST also adopted the Calibration File Manager (CFM) developed for BNL
experiment E787. CFM allows the user to associate run numbers with calibration files.
Calibration types (plane position corrections, wire position corrections, etc) may be
defined through CFM. For example, DC_PPC defines the calibration type for the Drift
Chamber Plane Position Corrections. CFM allows up to 5 characters to identify a
component (Drift Chamber, DC, in this case) and up to 3 characters to identify its
attributes (Plane Position Corrections, PPC). The file name for a calibration type has the
form XXXXX_YYY.NNNNN where NNNNN is a 5-digit (version) number called an
indicator. For example dc_ppc.00001 is a PPC file name with indicator number equal to
1. CFM is then asked to associate a run number, or a group of runs with indicator 1 for
the calibration type DC_PPC. When MOFIA is run it checks the run number and obtains
the indicator number and the file name for each calibration type from CFM. CFM
expects all calibration files to reside in the directory defined by the environment variable
CAL_DB. All calibration files are in ascii format which allows the user to easily display
and edit their contents. To run CFM type CFM (outside MOFIA). Commands may be
issued at the CFM command line to view the contents of CFM or modify and change the
existing information. The help command provides the user with online help.

Three CFM commands are handy for viewing the contents of CFM and are worth
mentioning here. The command show types displays the calibration types defined in CFM
as shown in the example below

CFM> show types

 1:DC_PPC 2:DC_WPC 3:DC_RES 4:DC_PRC 5:DT_GEO 6:FBC1_MAP
 7:FBC2_MAP 8:FBC3_MAP 9:DC_PZC 10:DC_WZC 11:DC_WRC
 12:DC_STR 13:PC_T0 14:DC_T0 15:SC_T0 16:PC_ADC 17:SC_ADC

These calibration files are described in Table 2. Another useful command is show set n
(where n equals the desired set number). This command will show the run numbers
associated with set n as well as the calibration file names associated with set n as shown
in the example below.

CFM> show set 15

CDF Set Run Total Run Range
------- --------- ---------
 15 0
CDF Names:
 DC_PPC.00003 DC_STR.00010 DC_WZC.00003 FBC2_MAP.00018
 PC_T0.00004 DC_PRC.00003 DC_T0.00006 DT_GEO.00024 FBC3_MAP
 SC_ADC.00001 C_PZC.00003 DC_WPC.00003 FBC1_MAP.00018
 PC_ADC.00001 SC_T0.00013 DC_RES.00004 DC_WRC.00003

September 15, 2003 16

Type Number Type Description

1 DC_PPC Drift chamber UV plane position corrections

2 DC_WPC Drift chamber UV wire position corrections

3 DC_RES Drift chamber resolution parameters

4 DC_PRC Drift chamber plane rotation corrections

5 DT_GEO Detector Geometry

6 FBC1_MAP Mapping file for first FASTBUS crate

7 FBC2_MAP Mapping file for second FASTBUS crate

8 FBC3_MAP Mapping file for third FASTBUS crate

9 DC_PZC Drift chamber plane Z position corrections

10 DC_WZC Drift chamber wire Z position corrections

11 DC_WRC Drift chamber wire rotation corrections

12 DC_STR Drift chamber space-time relations

13 PC_T0 Proportional chambers time zero

14 DC_T0 Drift chambers time zero

15 PC_T0 Proportional chambers

16 PC_ADC Proportional chambers ADC calibrations

17 SC_ADC Scintillators ADC calibrations

Table 2. Calibration types currently installed in the Calibration File Manager (CFM).

When a set is displayed with no indicator number (as in FBC3_MAP in the example
above) it means that although the type has been defined, no file has been associated with
it for the set displayed. The command show set (with no set number provided) displays
all sets currently defined in CFM. Finally the command show runs shows which runs are
associated with the different sets as in the example below

September 15, 2003 17

CFM> show runs
 Runs Total CDF Set

 1 : 4 4 1
 5 : 6 2 2
 7 : 20 14 3
 21 : 499 479 --
 500 : 800 301 4
 801 : 922 122 5
 923 : 924 2 6
 925 : 932 8 7
 933 : 955 23 8
 956 1 9
 957 : 1311 355 8
 1312 : 1500 189 12
 1501 : 1693 193 --
 1694 : 2499 806 13
 2500 : 5000 2501 19

For a more detailed description of CFM, please refer to the E787 document by Morgan
Burke at

http://e614db.triumf.ca/~e614/e614slow/offline/cfm/index.html

September 15, 2003 18

VII. Initialization Branch
he MOFIA initialization branch may
be divided into two parts: geometry
implementation and histogram

definitions as shown in Figure 1.

VII.1 Geometry
he MOFIA XYZ coordinate system
is defined to be right handed with
the +Y direction pointing upwards

and the +Z direction defined by the beam
direction. The UVZ coordinate system is
obtained through a clockwise rotation of the

XYZ system by a +450 rotation around the
Z-axis as shown in Figure 2.

The geometry description of the TWIST detector is read in from an ascii data file common
to both the Monte Carlo and MOFIA to ensure consistency. The geometry input file name has
the form dt_geo.NNNNN, where NNNNN is the indicator number (see section III). The
geometry input file is managed through the Calibration File Manager CFM, where the
association between version numbers and run numbers is made. This allows us to keep track
of any geometry changes in the TWIST detector.

The module mainf90/det_geom_mod.f90
contains the PUBLIC subroutines
OpenGeom, which opens the appropriate
geometry data file for the run number at
hand (by consulting with CFM), and calls
the function read_det_geom which reads
in the geometry data. The geometry data
file contains four sections for drift
chamber geometry, proportional chamber
geometry, scintillator geometry, and
target geometry. Each of these sections is
read by a function called by
read_det_geom: read_dc_geom,
read_pc_geom, read_sc_geom, and
read_tg_geom. These functions are all
PRIVATE and internal to the module
det_geom_mod. The geometry
information is saved in PUBLIC
variables declared in this module which
carry the same names as the

T
T begin_run

calibrations and geometry

define_hists
histogramming

analyze

analc

interpret

mofia

Figure 2 UV coordinate system relative to XY.

Figure 1 MOFIA initialization branch.

Y

X

U V

Z

45

x

September 15, 2003 19

corresponding Monte Carlo variables. In the Monte Carlo these variables are stored in the
common block det_geom.inc and the parameter file det_geom.par. Figure 3 shows a block
diagram for the code organization in the geometry initialization branch.

ReadDetGeom
read geometry data file

(1) OpenGeom
open geometry input file

det_geom_mod

SetupDCplanes
setup drift chamber

planes

SetupDCwires
setup drift chamber

wires

SetupSCdisks
setup prop chamber

planes

SetupPCplanes
setup prop chamber

planes

SetupPCwires
setup prop chamber

wires

(2) SetupChambers
setup the chambers

chambers_mod

begin_run

Figure 3 MOFIA geometry branch.

The module mainf90/chambers_mod.f90 is where all the geometry structures for the drift

dir
i4

stream
i4

minwire
i4

maxwire
i4

nwires
i4

iPlane
i4

z
r4

shift
r4

rotation
r4

wireSpacing
r4

centre(3)
r4

radius
r4

FullyInstrumented
Logical

wvector
r8(3)

nvector
r8(3)

mvector
r8(3)

plane_type
chambers_mod
DCplane (iplane)
PCplane (iplane)

Figure 4 Components of the plane_type geometry structure.

September 15, 2003 20

chamber and proportional chamber are defined and filled. These structures are shown
schematically in Figure 4.

The two types of structures, plane_type and wire_type, include the plane and wire
geometry structures, respectively. Each type has two instantiations, one for the drift chamber
and one for the proportional chamber: DCplane(iPlane), PCplane(iPlane),
DCwire(iPlane,iWire), and PCwire(iPlane,iWire). Table 3 contains a brief description of the
contents of the plane_type structure.

Plane_type Description
Dir Coordinate measured by plane (U or V)
Stream Plane location (upstream or downstream)
MinWire Number of the first wire in plane
MaxWire Number of the last wire in plane
NWires Total number of wires in plane
Z Z position of plane
Shift U or V position of plane
Rotation Angular orientation of plane
IPlane Plane number
wireSpacing Spacing between wires in plane
Center(3) Coordinates of plane center
radius Plane radius
fullyInstrumented Logical indicating whether all wires in plane are instrumented

Table 3 A brief description of the components in the geometry structure
plane_type.

The following are examples of how the first four components of plane_type are used. See
chambers_mod for more details.

IF (DCplane(iPlane)%dir == dir%u) THEN

IF (PCplane(iPlane)%stream == stream%up) THEN

DO iWire = DCplane(iPlane)%MinWire, DCplane(iPlane)%MaxWire

The structures, dir with components u and v (dir%u,dir%v) and stream with components
up and down (stream%up,stream%down), have also been publicly declared chambers_mod
and are available for usage by any module or procedure that uses chambers_mod. The planes
are labeled according to the coordinate they measure so that "U-planes" measure a U
coordinate while "V-planes" measure a V coordinate. The component rotation contains the
angular orientation of the plane. Four different angle orientations appear in the geometry file.
This implementaion is necessary to achieve consistency with the hardware labeling of wires.
In order to define a single coordinate system for all planes (upstream and downstream) as well
as maintain the wire numbering scheme assigned in hardware, DC V-planes in the upstream
half of the detector must have increasing wire numbers in the -V direction, and DC U-planes
in the downstream half of the detector must have increasing wire numbers in the -U direction.
The U and V planes are made out of X- planes by rotating them around the Z-axis, as shown
in Figure 5 resulting in the four angular orientations listed in the figure.

September 15, 2003 21

While the component iPlane is obviously redundant when used in the form
DCplane(iPlane)%iPlane, the reason for putting it in the structure is to allow accessing the plane
number through a pointer in the hit structure, and its usefulness will become evident when the
hit structure is discussed below.

Table 4 contains a brief description of the components of wire_type. The components
iWire and planeP were introduced in this structure for the same reason that iPlane was
introduced in the plane_type structure, and their usefulness will also become evident when the
hit structure is discussed.

Wire

Y

X

U V
45
0

-135o rotation
downstream PC U planes
downstream DC U planes
DS target PC U plane

+135o rotation
downstream PC V planes
downstream DC V planes
US target PC V plane

+45o rotation
upstream PC U planes
upstream DC U planes

-45o rotation
upstream PC V planes
upstream DC V planes

Wire l

Wire l

Wire l

Wire l

Figure 5 Construction of U and V planes from X planes in GEANT and MOFIA.
The angles indicated are the ones that appear in the geometry file

September 15, 2003 22

As shown in Figure 3, access to chambers_mod is achieved through a call from
mainf90/begin_run.f90 to chambers_mod PUBLIC subroutine SetupChambers, which in
turn calls PRIVATE subroutines within chambers_mod that do the job of filling up the
geometry structures (SetupDCplanes, SetupPCplanes, SetupDCwires, SetupPCwires and
SetupSCdisks). This reflects a general philosophy employed in developing the code, namely
minimizing the number of entry points to the module by having a few (preferably one)
PUBLIC subroutines to be called from outside the module, while the remaining subroutines in
the module are made PRIVATE and can, therefore, only be called from within the module.
The chambers_mod has a second entry point for testing purposes. The PUBLIC subroutine
PrintGeom, is accessed through a call from the subroutine func, and maybe invoked by typing
func 6 at the MOFIA command line. When invoked, PrintGeom calls private subroutines
within chambers_mod that create geometry ouput data files for purposes of testing the
geometry information (dc_planes_geom.out, pc_planes_geom.out, dc_wires_geom.out, and
pc_wires_geom.out).

wire_type
Description

bottom Wire “bottom” end point position coordinates
(bottom%u,bottom%v,bottom%z)

center Wire central position coordinates (center%u,center%v,center%z)
top Wire “top” end point position coordinates (top%u,top%v,top%z)
iWire Wire number
planeP Pointer to plane_type

Table 4 A brief description of the components in the geometry structure
wire_type.

u
r4

v
r4

z
r4

bottom
point3_type

u
r4

v
r4

z
r4

centre
point3_type

u
r4

v
r4

z
r4

top
point3_type

iWire
i4

t0
r4

planeP
pointer to plane_type

nMXd_wires
i4

wires
i4(MAX_MULTIPLEXING)

wire_type
chambers_mod

DCwire (iplane, iwire)
PCwire (iplane, iwire)

Figure 6 Components of the wire_type geometry structure.

September 15, 2003 23

It is worth noting that the geometry file does not contain any information on wire positions
and orientations. These values are calculated in the subroutines SetupDCwires and
SetupPCwires using plane positions and orientations provided in the geometry data file and
the wires nominal separation (of 0.4 cm for the DCs and 0.2 cm for the PCs). Corrections to
both, planes nominal positions and wires nominal positions, are read in from calibration files
and implemented in chambers_mod as corrections to the nominal positions. Procedures in the
module mainf90/calibrations_mod.f90 are accessed through a call from
mainf90/begin_run.f90 to the module’s PUBLIC subroutine ReadCalibFiles, which in turn
calls PRIVATE procedures within the module to open the appropriate calibration files for the
run at hand (through calls to CFM) and read them in. Currently 11 subroutines are called from
ReadCalibFiles corresponding to 11 calibration types that are defined in CFM, these
subroutines are: CalibPlaneCorrUV, CalibPlaneCorrZ, CalibPlaneCorrRot,
CalibWireCorrUV, CalibWireCorrZ, CalibWireCorrRot, CalibSTR, CalibT0, CalibEff,
CalibRes, CalibADC. Some of these calibrations, however are either not implemented in
MOFIA or contain trivial data since their contents have not been determined yet.

Figure 7 shows the calibrations data structures related to the chamber’s geometry. As
shown in this figure, these corrections include U or V and Z position shifts for each DC plane
and wire, as well as rotation corrections for each DC plane and wire. These corrections are
included in the geometry structures in chambers_mod, so that the components Zshift, UVshift
and rotation in the plane_type structure already have these corrections built in.

The contents of the calibrations structures are accessed in chambers_mod through a USE
statement (USE calibrations_mod), and the appropriate corrections are made to the geometry variables.

.

VII.2 Histogramming
TWIST adopted HBOOK for histogramming purposes since it is a package that many
members of the collaboration are familiar with. Since users tend to define a large number of
histograms for purposes of testing their code or analyzing some specific data, in many cases
keeping these histograms as part of the official TWIST code is not practical. For one thing,
CPU time will be wasted filling in histograms that most users don’t need; and for another, the
number of histograms created becomes large so that sorting through the histogram list to find

UVshift
r4

rotation
r4

Zshift
r4

corrections_type
calibrations_mod

dcplane_corr(MAX_PLANES_D), dcwire_corr(MAX_PLANES_D, MAX_WIRES_D)
pcplane_corr(MAX_PLANES_P), pcwire_corr(MAX_PLANES_P, MAX_WIRES_P)

Figure 7 Corrections structures for
geometry calibrations.

September 15, 2003 24

the desired histogram becomes tedious. The decision was therefore made to provide two
histogramming modules. The first, mainf90/hists_mod.f90, is the module that contains the
official histograms that are to be kept and used by all users. The second module,
user/user_hists_mod.f90, is where each user defines their own histograms. The user is
responsible for keeping and maintaining their own copy of this module. If you add your own
histograms make sure you don’t overwrite your own copy of user_hists_mod.f90 when you
update your code; save this module under a different name before updating your code. The
histogramming branch is shown in Figure 8.

DefineRawHists DefineHists

DefinePatternHists DefineFirstGuessHists

DefineTrackHists DefinePhysicsHists

DefineXtalkHists

DefineMainHists
hists_mod

uDefineRawHists uDefineHists

uDefinePatternHists uDefineFirstGuessHists

uDefineTrackHists uDefinePhysicsHists

DefineUserHists
user_hists_mod

define_hists
histogramming

Figure 8. MOFIA histogramming branch.

The subroutine main/define_hists.F makes two calls, one to the PUBLIC subroutine
DefineMainHists in mainf90/hists_mod.f90, and the other to its counterpart,
DefineUserHists in user/user_hists_mod.f90. These subroutines, in turn, call PRIVATE
subroutines within the module, one for each section of the code: DefineRawHists to define
raw histograms, DefineHists to define histograms after initial filtering, DefineXtalkHists to
define cross talk histograms, DefinePatternHists to define pattern recognition histograms,
DefineFirstGuessHists to define helix fit “first guess” histograms, DefineTrackHists to
define tracking histograms, and DefinePhysicsHists to define physics analysis histograms. As
seen from figure 5 these subroutines have similar names in the hists_mod and user_hists_mod
except that the letter “u” (for user) is pre-pended to the name in the user_hists_mod. The call
to each one of these sections is controlled by a namelist flag in the namelist hist which allows
the user to turn off that section so that histograms are neither defined nor filled. For example
setting “FillRawHists = .FALSE.” will bypass the call to DefineXtalkHists. The namelist hist
contains several other useful variables; the command “show name hist” displays the list

September 15, 2003 25

MOFIA> show name hist

NameList HIST: HISTogramming parameters

nEVTprocessed = -1 (dflt = -1,OFF): Write hists every nEVTprocessed events

 FillRawHist = T (dflt = T) : Fill raw histograms

 FillHist = T (dflt = T) : Fill histograms after initial filtering

 FillTrackHist = T (dflt = T) : Fill tracking histograms

 FillPatternHist = T (dflt = T) : Fill pattern recognition histograms

 PulserHistToggle = T (dflt = F) : Fill histograms with random pulser data(T) or normal triggers(F)

 FillPhysicsHist = T (dflt = T) : Fill physics histograms

 FillFirstGuessHist = F (dflt = T) : Fill helix first guess histograms

 FillXtalkHist = T (dflt = T) : Fill cross talk histograms

 PlaneHists = T (dflt = T) : Generate individual plane histograms

 Globalmem_toggle = T (dflt = T) : Turn Global Memory Section on (T) /off (F)

 TDC_MIN = 0. (dflt = 0.) : Lower limit on TDC spectra

 TDC_MAX = 6000. (dflt = 6000.) : Upper limit on TDC spectra

 Raw_XMI_tdcslot = 0. (dflt = 0.) : Lower limit on RAW TDC plots

 Raw_XMA_tdcslot = 30000. (dflt = 30000.) : Upper limit on RAW TDC plots

 Raw_NX_tdcslot = 3 (dflt = 3) : Number of RAW x Channels for TDC plots

 WEvent_per_plane = F (dflt = F) : Turns on/off #of wires hit/event/plane hists

 HMult_times = F (dflt = F) : Turns on/off Time difference between multiple hits on a wire hists
To avoid conflicts between the user defined histogram numbers and the main histogram

numbers, values between 1 and 50,000 are reserved for the main histograms; user histograms
should always have numbers higher than 50,000. To avoid conflicting histogram numbers
between the main histograms themselves, a range of histogram numbers has been reserved for
each section of the code, as specified on the chart of Figure 8. Histogram numbers are
assigned to variables in the declaration section of the histogramming modules. This has two
advantages. First, if a histogram number is to be changed it only needs to be done once (rather
than once where the histogram is defined and once where the histogram is filled) which
reduces the potential for mismatches. Second, if this list is maintained in ascending order it
becomes easy to see which histogram numbers have already been used and reduces the risk of
conflicts.

The module hists_mod.f90 (user_hists_mod.f90) also contains a set of PUBLIC
subroutines for filling histograms. These are FillRawHists, FillHists, FillXtalkHists,
FillPatternHists, DefineFirstGuessHists, FillTrackHists, and FillPhysicsHists. Each of
these subroutines is (or otherwise should be) called from the appropriate module where the
corresponding calculations are made.

September 15, 2003 26

To define a new histogram the user should start by declaring an ID parameter for the
histogram in mainf90/hists_mod.f90 (or user/user_hists_mod.f90 if the histogram is not
intended to become part of the official code). For example, to define a raw histogram
containing the TDC spectra of all the wires in one histogram we declare the parameter
IDH_TDC_ALL to be the histogram’s ID

INTEGER (i4), PARAMETER :: IDH_TDC_ALL = 3

We then install a call to the HBOOK subroutine “HBOOK1” to define a 1-D histogram in
the subroutine DefineRawHists

! TDC time (total)

CALL HBOOK1 (IDH_TDC_ALL, 'DC TDC TIME', TDC_MAX-TDC_MIN, TDC_MIN, TDC_MAX, 0.0)

The first parameter in the call to hbook1 is the histogram ID. The second is a description of the
contents of this histogram to be displayed as a histogram label. The third parameter is the
number of bins, which in this example is the expression TDC_MAX-TDC_MIN. The next
two parameters are the histogram’s lower and upper limits, respectively (TDC_MIN and
TDC_MAX). To fill this histogram a call is made to the HBOOK subroutine HFILL from the
subroutine FillRawHists

 ! RAW TDC spectra for all wires in one histogram

 CALL hfill (IDH_TDC_ALL, timeP, 0.0, 1.0)

The first parameter in this call is the histogram ID (as in the call to hbook1). The second
parameter is the variable containing the TDC time, in this case a pointer to the TDC time,
timeP. Note that this variable has to be real, if an integer is to be plotted the variable has to be
converted to real first. For example if timeP was a pointer to an integer variable the second
parameter in the hfill call should be REAL(timeP) rather than timeP. Failure to do so will
result in run time errors.

September 15, 2003 27

VIII. Analysis Branch
schematic view of the MOFIA analysis branch is shown in Figure 8. The procedure
dplot is the TWIST event analysis subroutine. From dplot calls are made to analyze
the event starting with the TDC unpacking, filling the histograms, filtering the event,

etc.

tdcmap_read
read TDC map file

(1) tdcunp
unpack the TDCs

tdc_mod

(2) FillRawHists
fill histograms before filtering

hists_mod

(3) uFillRawHists
fill user histograms before filtering

user_hists_mod

(4) FilterEvent
filter the event

filters_mod

(5) FillHists
fill histograms after filtering

hists_mod

(6) uFillHists
fill user histograms after filtering

user_hists_mod

(7) AnalyzeXtalk
cross talk analysis

xtalk_mod

(8) Pattern
pattern recognition analysis

pattern_mod

(9) Windowing
time sorting

window_mod

(10) Tracking
track fitting

tracking_mod

dplot
E614 event analysis subroutine

analc

analyze

interpret

mofia

Figure 8 MOFIA analysis branch.

A

September 15, 2003 28

VIII.1 TDC Unpacking
rom dplot a call is made to the PUBLIC function tdcunp in module tdc_mod, in order
to unpack the TDCs. This module also contains the declarations and initializations (and
filling) of the data structures associated with the TDC hit structures which are shown in

Figure 9. Table 5 shows a brief description of the tdc_type structure. This type has two
instantiations, DCtdc(ihit) and PCtdc(ihit). The first two components of the structure are the
time and width of the TDC signal. The time stored in these structures is in nanoseconds, and is
measured relative to the delayed (by ~10 µs) trigger signal.The third component, flag, is an
integer that is assigned a zero value for normal TDC signals, and a non-zero value if the TDC
signal has a peculiar characteristic (such as a leading edge but no trailing edge, etc). Table 6
contains a listing of these flags. The last two components in this structure are two pointers.
The first, wireP, points back to the wire geometry structure and, therefore, provides the link
between the hit structure and the geometry structures. To point to the wire and plane numbers
for a particular DC TDC hit, for example, we have

INTEGER (i4), POINTER :: iwP, ipP

iwP => DCtdc(ihit)%wireP%iwire

ipP => DCtdc(ihit)%wireP%planeP%iplane

and so on. In the above example we could have defined integer variables iw and ip (instead of
pointers iwP and ipP); in which case we have

INTEGER (i4) :: iw , ip

iw = DCtdc(ihit)%wireP%iwire

ip = DCtdc(ihit)%wireP%planeP%iplane

However, since copying data from a structure to a new variable is generally less efficient than
using a pointer, it is recommended that the above style be used.

time
r4

width
r4

flag
i4

wireP
pointer to wire_type

whitsP
pointer to Whits_type

tdc_type
tdc_mod

DCtdc (ihit)
PCtdc (ihit)

Figure 9 MOFIA TDC hit structure.

F

September 15, 2003 29

tdc_type Description

Time TDC signal leading edge

width TDC signal width

Flag Characteristic of the TDC signal (described in table 3)

wireP Pointer to wire geometry structure wire_type

whitsP Pointer to wire hits structure whits_type

Table 5 A brief description of the components of the hit structure tdc_type.

flag
Value

Description width
Value

Details

0 Good hit Trailing edge followed by leading edge on same
channel

1 No leading
edge

0 Trailing edge following another trailing edge

2 No leading
edge

0 Last edge on channel, but it’s a trailing edge

3 No leading
edge

0 Last edge was a trailing edge from a different
channel

4 No trailing
edge

99999 First edge on channel, but it’s a leading edge

5 No trailing
edge

99999 Leading edge following another leading edge

6 No leading
edge

0 Last edge on channel is a trailing edge

7 No trailing
edge

99999 First edge on channel is a leading edge

7 Width < 0 0 Trailing edge followed by leading edge, but
width < 0

Table 6 Description of the flag values in the tdc_type structure.

September 15, 2003 30

The second pointer in the tdc_type structure, whitsP, provides the link to the whits_type
structure shown in Figure 9. This structure is also defined and filled in the module tdc_mod.
The first element in this structure, nhits, is the number of TDC hits on that wire and the
second element, hits(index), contains the hit number as it appears in the hit list in the tdc_type
structure. This is best understood through an example. The number of hits on wire 32 in DC
plane 26 is then

DCwhits(26,32)%nhits

To assign two pointers, ihitP and timeP, to the hit index and TDC time for the second hit on this
wire we have

INTEGER (i4), POINTER:: ihitP

REAL (r4):: timeP

ihitP => DCwhits(26,32)%hits(2)

timeP => DCtdc(ihitP)%time

The above example demonstrates another case of assigning pointers to a component of a
structure. While the last two lines may have been combined in one, so that

timeP => DCtdc(DCwhits(26,32)%hits(2))%time

the style of assigning a pointer makes the code more readable. It is also more efficient, since
typically such statements would be inside do loops (looping over planes, wires, hits, etc), and
hence the hit number is extracted from the structures once by assigning it to a pointer(ihitP, in
this case), and the pointer is then used within that loop from that point on. Another useful
technique is to assign a pointer to a structure (as opposed to a component of a structure in the
examples above). This also provides faster execution time; and improves the readability of the
code. For example, one can declare the pointer whitP and assign it to a structure

DO iPlane = 1, Ndplanes

 DO iWire = 1, Ndwires(iPlane)

 whitP => DCWhits(iPlane,iWire)

 nhitsP => whitP%nhits

 END DO

END DO

Scintillator hit times are stored in the SCtdc structure which is similar to the TDC structure
above, and differs only in that the scintP pointer to the scintillator geometry replaces wireP.

nhits
i4

hits (kMaxHitsPerWIre)
i4

iwire
i4

Whits_type
tdc_mod

DCWhits (iplane,wire_index)
PCWhits (iplane,wire_index)

Figure 10 MOFIA wire hits structure.

September 15, 2003 31

The two structures SCadc and PCadc hold ADC data from the PACT modules, unpacked and
interpreted to give the energy deposited in the detector. These structures are similar to the
TDC structures above with the two components time and width replaced by the component
e_lost which holds the energy deposited in KeV.

Additionally the raw TDC data is unpacked into DCtdc_raw, PCtdc_raw, SCtdc_raw,
PUtdc_raw, PCadc_raw and SCadc_raw whenever the namelist variable rawout > 0. This is
intended for use in debugging and possibly determination of time calibration. The structure
PUtdc_raw holds pulsar information.

Procedures to add and remove entries from these structures, as well as the type definitions, are
found in tdc_mod.f90 in the directory mainf90. Tables relating scintillator numbers, plane and
wire numbers, as well as pulsar information to the TDC slot and address locations are handled
in tdcmap_mod.f90 in the directory mainf90. This code reads in the mapping information
through CFM. The CFM types corresponding to these map files are FBC1_MAP,
FBC2_MAP, and FBC3_MAP.

September 15, 2003 32

VIII.2 Filtering
ollowing the call to tdcunp, a call is made to FillRawHists (and its user counterpart,
uFillRawHists) where some histograms are filled before any event filtering is done.
The event is then filtered by calling the PUBLIC subroutine Filters in module

mainf90/filters_mod.f90, followed by a call to FillHists and uFillHists to fill some
histograms after event filtering.

The public subroutine Filters makes calls to three PRIVATE subroutines: FiltersInit
initializes the various counters used in this module, FiltersCounters calculates these counters,
and FiltersApply is the subroutine where the event filters are applied. These filters include:
scintillator filters, drift chamber filters, proportional chamber filters and RF filters. Several
tests are performed on each event to determine whether it passes or fails a filter/cut. Values for
these cuts are determined by the user through the namelist variables which will be discussed
below. Counters are maintained for events failing a certain cut and statistics of these failures
may be displayed by typing show fail at the MOFIA command line, as in the example below

MOFIA> show fail

Event Statistics:

 ICFAIL= 0 (GOOD EVENT) 2072 2072

 ICFAIL= 2 (NO HITS IN CHAMBERS) 5 5

 ICFAIL=11 (BAD EVENT) 684 684

 ICFAIL=12 (BAD EVENT) 13 13

 ICFAIL=14 (BAD EVENT) 225 225

 ICFAIL=15 (BAD EVENT) 1 1

The first column of numbers shows the number of events failing the filters since the last
analyze command was entered while the second column shows the total since the MOFIA
session was started. In addition, a histogram (ID=5000) is incremented every time an event
fails a filter. A description of the failure codes is documented in the appendix.

VIII.3 Cross Talk
ollowing event filtering a call is made to the PUBLIC subroutine Xtalk in the module
user/talk_mod.f90. Xtalk Calls two PRIVATE subroutines, XtalkInit which is used to
initialize some counters, and XtalkAnalyze which performs an analysis of each hit to

determine if it is a cross talk hit, increments the cross talk counters for each plane and wire in
the DC, and removes the hit from the data structures if it is determined to be a cross talk hit.
Three criteria are used to determine whether a hit is a likely cross talk hit. First, the hit is
required to have a TDC width shorter than a user imposed value determined by the variable
DC_XTALK_WCUT in the namelist DCCUTS. Second, the hit is required to occur in a cell
adjacent to one with a hit that has a TDC width longer than DC_XTALK_WCUT. Third, the
suspected cross talk hit is required to coincide in time with the hit in the adjacent cell. Note,

F

F

September 15, 2003 33

however, that the user must provide a value for DC_XTALK_WCUT, otherwise no cross talk
analysis will be performed.

The user can initialize or print out the cross talk percentages at any time during a MOFIA
session by typing func 12 on the MOFIA command line. Output files will be created and a
message will be displayed on the screen notifying the user of the file names.

VIII.4 Calibrations
he calibrations branches of MOFIA are controlled by a set of flags in the namelist
DCCFLAGS (DC Calibration FLAGS). These branches are not normally executed
when running MOFIA, and the user has to turn a specific flag on to execute a given

calibration branch. The calibrations flags control MOFIA branches that are used to compute
efficiency, plane positions, wire positions, plane rotations, DC chamber resolution and time
zero.

MOFIA> show name dccflags

NameList Alignment: Alignment parameters

FindPlanePos = F (dflt = F) : Find plane positions

FindWirePos = F (dflt = F) : Find wire positions

FindPlaneRot = F (dflt = F) : Find plane rotations

FindTDC0 = F (dflt = F) : Find TDC time zero

FindResolution = F (dflt = F) : Find drift chamber resolution

VIII.4.1 Efficiency
he efficiency code relies on the tracking to compute plane and wire efficiencies for
both the DCs and the PCs. After a track is successfully reconstructed a call is made to
the PUBLIC subroutines EffDC and EffPC in the module user/efficiency_mod.f90.

These subroutines make calls to EffDCinit and EffPCinit to initialize the efficiency counters,
and to EffDCcalc and EffPCcalc to calculate the efficiencies. The call to EffDC and EffPC,
however, is controlled by the namelist flag FindEff in namelist efficiency, so that if this
namelist variable is set to false the efficiency code will not get executed. In this case if the user
attempts to output the efficiency counter (using func 12) a message will appear on the screen
informing the user that the FindEff flag has to be turned on before the data is analyzed. The
show command may be used to display the contents of namelist efficiency

MOFIA> show name efficiency

Namelist Efficiency: Efficiency calculation parameters

RadiusCutDense = 5.000 (dflt = 15 cm): DC dense stack radius cut

T

T

September 15, 2003 34

 RadiusCutSparse = 15.000 (dflt = 15 cm): DC sparse stack radius cut

 CellCut = 2 (dflt = 2): Max number of adjacent cells to investigate on each side of the cell expected to have a hit.

 CellCut = 10 (dflt = 10): Minimum number of hit planes

 FindEff = F (dflt = .FALSE.): Calculate chamber efficiency

The efficiency code uses the reconstructed track parameters to traverse through the detector
and find the cells intersected by the track. It then checks whether these cells have hits and
increments the appropriate counters shown in the structures diagram of Figure 11. In order to
avoid edge effects (i.e. cases where the track has
actually exited the active area of the chamber, but
the track parameters point to the first/last cell due
to tracking errors) two parameters are provided to
impose an edge cut. These are RadiusCutDense
which allows the user to set a radius cut on planes
in the dense stack that have only 48 instrumented
wires, and RadiusCutSparse to place a radius cut
on the sparse stack in which all 80 wires are
instrumented. The variable CellCut allows the
user to determine how many adjacent cells should
be investigated if no hit is found where the
reconstructed track parameters point.

VIII.4.2 Time Zero

VIII.4.3 Alignments
oth rotational and translational alignments are currently implemented in MOFIA.
When any of the variables FindPlanePos, FindWirePos or FindPlaneRot in the
namelist DCCFLAGS is turned on a call is made to the PUBLIC subroutine Align in

the module user/align_mod.f90. Align calls AlignInit, a PRIVATE initialization subroutine in
the module, followed by a call to one or more of the PRIVATE subroutines AlignPlaneShifts,
AlignWireShifts, and AlignPlaneRotations depending on whether the corresponding namelist
flags are turned on. These are the subroutines that perform calculations of plane and wire
translational position corrections (in the U and V directions) and the plane rotational
corrections (around the z-axis). Once the plane translational and rotational alignments are
determined, the results are stored in calibration files that are read into MOFIA through CFM.
The CFM types corresponding to these calibrations are DC_PPC and DC_PRC, for the DC
plane position corrections and plane rotation corrections, respectively.

B

present
i4

expected
i4

found
Logical

Effcounters_type
efficiency_mod

DCeffPlane (iplane)
PCeffWire(iplane,iwire), DCeffCell(ibin)

Figure 11MOFIA efficiency
structure.

September 15, 2003 35

VI I I .4 .3 .1 TRANSLATIONAL AL IGNMENTS

fter analyzing a number of events determined by the user through the variable
nEventsPlane in the namelist alignment the subroutine AlignPlaneShifts is called to
determine an average residual for each plane from tracks reconstructed successfully.

The subroutine proceeds by installing the average residuals as a correction to the plane and
wire positions. The tracking then proceeds as normal until another nEventsPlane are analyzed
and the call is made again to AlignPlaneShifts to determine and install the new corrections.
This iteration continues until the specified runs (or events) are analyzed. The user can also
iterate on the same file by simply using the MOFIA commands to rewind and reanalyze the
file as many times as the user desires. The variable FixPlanes in namelist alignment also
allows the user to fix two U and two V planes if the user so desires, and to specify which
planes should be fixed through the variables FixedPlane1, FixedPlane2, FixedPlane3 and
FixedPlane4 in the same namelist. The corrections for the fixed planes will not be installed,
instead their nominal positions will be used. The command show name alignment shows the
contents of the alignment namelist.

MOFIA> show name alignment

 NameList Alignment: Alignment parameters

 nEventsPlane (def = 10000) = 10000 Total number of events per iteration for calculating plane positions

 nEventsWire(def = 100000) = 100000 Total number of events per iteration for calculating wire positions

 AlignAngleU (def = 0.0) = 0.000 Angle of the U planes transverse-alignment line with respect to the beam

 AlignAngleV (def = 0.0) = 0.000 Angle of the V planes transverse-alignment line with respect to the beam

 FixPlanes (def = FALSE) = F Choose a line for transverse alignment defined by any 2 U and 2 V planes

 FixedPlane1 (def = 1) = 1 Plane number for one of the four fixed planes used to define the alignment line

 FixedPlane1 (def = 1) = 2 Plane number for one of the four fixed planes used to define the alignment line

 FixedPlane1 (def = 1) = 7 Plane number for one of the four fixed planes used to define the alignment line

 FixedPlane1 (def = 1) = 8 Plane number for one of the four fixed planes used to define the alignment line

VI I I .4 .3 .2 ROTATIONAL AL IGNMENTS

For rotational alignments the subroutine AlignPlaneRotations is called once nEventsPlane are
analyzed. In this case an average residual is determined for each plane, binned in 7 bins along
the length of a wire. For each plane the average residuals in each length bin can be used to
determine the plane rotational correction.

VIII.4.4 Resolution
esolution for DME is strongly dependent on drift distance being mainly influenced by
two processes: ionization statistics and diffusion. At distances close to the wire
ionization statistics dominate, while diffusion becomes dominant near the edge of the

A

R

September 15, 2003 36

cell where the electric field is weak. The strong variation in resolution across the cell requires
the binning of the residuals along the distance from the wire. The resolution code currently
uses a bin width of 100 µm.

When the calibration flag FindRes in the namelist DCCFLAGS is turned on, a call is made to
the PUBLIC subroutine Resolution in module user/resolution_mod.f90. This subroutine
makes a call to ResolutionDC which proceeds to calculate the resolution by examining the
residuals in each of the distance bins. One of three methods can be chosen by the user to
analyze the residuals: fitting the binned residuals to a gaussian, performing a squared sum
calculation, or determining the FWHM of the binned distributions. Each of these methods has
its advantages and disadvantages. For example, the gaussian method would be appropriate if
the resolution is constant within a certain bin (or the bin width is infinitesmal). Details on the
resolution calculations will be provided in a technical note.

The method used to analyze the residuals is determined by the variable calcResidualMethod in
namelist rezs. Also in this namelist the user can choose the number of events required to be
analyzed before the residuals are calculated. This is determined by the variable nEventsMax.

Once the resolution (defined by σ of a guassian fit, σ from a squared sum, or σ from FWHM)
is determined, the tracking proceeds again using the new resolutions in the track fitting until
nEventsMax are analyzed at which point the subroutine Resolution is called again to
determine and install the new resolution. The iterations continue until all the specified
events/runs are analyzed with each iteration using the resolutions determined from the
previous iteration in the track fit.

The command show name rezs shows the contents of the rezs namelist

MOFIA> show name rezs

 Namelist REZS: Resolutions

 nEventsMax = 5000 (dflt = 5000): # Events per Resolution Iteration

 MinHistFitEntries = 1000 (dflt = 1000): # histogram entries necessary to do fit

 nResidualBins = 300 (dflt = 300): # Bins in residual histograms.

 MinResidualValue = 0.30 (dflt = -0.3): Min histogram channel (cm).

 MaxResidualValue = 0.00 (dflt = 0.3): Max histogram channel (cm).

 calcResidualMethod = *** (dflt = 3): Residual calculation method.

 1=> Gaussian Fit to residual histograms.

 2=> SquaredSum calculation.

 3=> FWHM calculation.

September 15, 2003 37

VIII.5 Pattern Recognition
he purpose of the pattern recognition is to assign hits to tracks and provide starting
track parameters to the fitting routine. For information on the pattern recognition code
please refer to the document by Jim Musser at

http://

VIII.6 Tracking
Both a χ2 fit and a Kalman filter are used for tracking purposes. Currently the Kalman filter is
used for straight track fitting and the χ2 fit is used for helix track fitting. The intention is to
modify the Kalman filter in the future to handle helix tracks as well.

VIII.6.1 χ2 Fit
Details on the χ2 fit may be found on the web in the document written by Konstantin
Olchanski at

http://

VIII.6.2 Kalman Filter
Details on the Kalman filter may be found on the web in the document written by Maher
Quraan at

http://

T

September 15, 2003 38

X. Appendecies

X.1 Namelist Variables

MOFIA> show name

 NAMELIST DESCRIPTION:

 BATCH BATCH LOG control parameters

 HCUTS DPLOT user cuts

 DCSET Drift Chamber SETtings

 PCSET Proportional Chamber SETtings

 HIST HISTogramming parameters

 PHOTO PHOTO flags

 DCCFLAGS Drift Chamber Calibration FLAGS

 SCSET SCintillator SETtings

 SCCUTS SCintillator CUTS

 RFCUTS RF CUTS

 DCCUTS Drift Chamber CUTS

 PCCUTS Proportional Chamber CUTS

 KPUNIT MOFIA print units

 SCFLAGS SCintillator FLAGS

 KFLAGS MOFIA execution control flags

 PRCNTL Print control flags

 GLOBAL GLOBAL settings

 QOD QOD Monitor params

 STRSET STR SETtings

 KalmanCuts Kalman Tracking Cuts

 Alignment Alignment parameters

 FirstGuess First Guess parameters

 HelixFit HelixFit parameters

 TimeZero Time zero fit settings

 Efficiency Efficiency settings

 REZS REZolutionS controls

September 15, 2003 39

MOFIA> show name DCSET

 NameList DCSET: Drift Chamber SETtings

 FirstPlaneDC = 1 (dflt = 1): First DC plane

 LastPlaneDC = 44 (dflt = 44): Last DC plane

MOFIA> show name PCSET

 NameList PCSET: Proportional Chamber SETtings

 FirstPlanePC = 1 (dflt = 1): First PC plane

 LastPlanePC = 12 (dflt = 12): Last PC plane

MOFIA> show name hist

 NameList HIST: HISTogramming parameters

 nEVTprocessed = -1 (dflt = -1,OFF): Write hists every nEVTprocessed events

 FillRawHist = T (dflt = T) : Fill raw histograms

 FillHist = T (dflt = T) : Fill histograms after initial filtering

 FillTrackHist = T (dflt = T) : Fill tracking histograms

 FillPatternHist = T (dflt = T) : Fill pattern recognition histograms

 PulserHistToggle = T (dflt = F) : Fill histograms with random pulser data(T) or normal triggers(F)

 FillPhysicsHist = T (dflt = T) : Fill physics histograms

 FillFirstGuessHist = F (dflt = T) : Fill helix first guess histograms

 FillXtalkHist = T (dflt = T) : Fill cross talk histograms

 PlaneHists = T (dflt = T) : Generate individual plane histograms

 Globalmem_toggle = T (dflt = T) : Turn Global Memory Section on (T) /off (F)

 TDC_MIN = 0. (dflt = 0.) : Lower limit on TDC spectra

 TDC_MAX = 6000. (dflt = 6000.) : Upper limit on TDC spectra

 Raw_XMI_tdcslot = 0. (dflt = 0.) : Lower limit on RAW TDC plots

 Raw_XMA_tdcslot = 30000. (dflt = 30000.) : Upper limit on RAW TDC plots

 Raw_NX_tdcslot = 3 (dflt = 3) : Number of RAW x Channels for TDC plots

 WEvent_per_plane = F (dflt = F) : Turns on/off #of wires hit/event/plane hists

 HMult_times = F (dflt = F) : Turns on/off Time difference between multiple hits on a wire hists

MOFIA> show name dccflags

 NameList DCCFLAGS: Drift Chamber Calibration FLAGS

 FindPlanePos = F (dflt = F) : Find plane positions

 FindWirePos = F (dflt = F) : Find wire positions

 FindPlaneRot = F (dflt = F) : Find plane rotations

 FindTDC0 = F (dflt = F) : Find TDC time zero

September 15, 2003 40

 FindResolution = F (dflt = F) : Find drift chamber resolution

MOFIA> show name dccuts

 NameList DCCUTS: Drift Chamber CUTS

 DC_MAXTDC_CUT = 20000.00 (dflt = -1, OFF): Max TDC channel cut

 DC_MINTDC_CUT = ******* (dflt = -1, OFF): Min TDC channel cut

 DC_MAXWTDC_CUT = 150.00 (dflt = -1, OFF): Max TDC width cut

 DC_MINWTDC_CUT = -1.00 (dflt = -1, OFF): Min TDC width cut

 DC_MAX_HITS_IN_PLANE = -1 (dflt = -1, OFF): Max hit wires in plane cut

 DC_MIN_PLANES = -1 (dflt = -1, OFF): Min planes cut

 DC_XTALK_WCUT = -1.00 (dflt = -1, OFF): Min cross talk TDC width cut

 DC_NOISE_WCUT = -1.00 (dflt = -1, OFF): Min noise TDC width cut

MOFIA> show name pccuts

 NameList PCCUTS: Proportional Chamber CUTS

 PC_MAXTDC_CUT = 6000.00 (dflt = -1, OFF): Max TDC channel cut

 PC_MINTDC_CUT = 0.00 (dflt = -1, OFF): Min TDC channel cut

 PC_MAXWTDC_CUT = 150.00 (dflt = -1, OFF): Max TDC width cut

 PC_MINWTDC_CUT = -1.00 (dflt = -1, OFF): Min TDC width cut

 PC_MAX_HITS_IN_PLANE = -1 (dflt = -1, OFF): Max hit wires in plane cut

 PC_MIN_PLANES = -1 (dflt = -1, OFF): Min planes cut

 PC_XTALK_WCUT = -1.00 (dflt = -1, OFF): Min cross talk TDC width cut

 PC_NOISE_WCUT = -1.00 (dflt = -1, OFF): Min noise TDC width cut

MOFIA> show name global

 BField (def = 0.) 0.000000

 UnpackMC = F

MOFIA> show name alignment

 NameList Alignment: Alignment parameters

 nEventsPlane (def = 10000) = 10000 Total number of events per iteration for calculating plane positions

 nEventsWire(def = 100000) = 100000 Total number of events per iteration for calculating wire positions

 AlignAngleU (def = 0.0) = 0.000 Angle of the U planes transverse-alignment line with respect to the beam

 AlignAngleV (def = 0.0) = 0.000 Angle of the V planes transverse-alignment line with respect to the beam

 FixPlanes (def = FALSE) = F Choose a line for transverse alignment defined by any 2 U and 2 V planes

 FixedPlane1 (def = 1) = 1 Plane number for one of the four fixed planes used to define the alignment line

 FixedPlane1 (def = 1) = 2 Plane number for one of the four fixed planes used to define the alignment line

September 15, 2003 41

 FixedPlane1 (def = 1) = 7 Plane number for one of the four fixed planes used to define the alignment line

 FixedPlane1 (def = 1) = 8 Plane number for one of the four fixed planes used to define the alignment line

 MOFIA> show name efficiency

 Namelist Efficiency: Efficiency calculation parameters

 RadiusCutDense = 5.000 (dflt = 15 cm): DC dense stack radius cut

 RadiusCutSparse = 15.000 (dflt = 15 cm): DC sparse stack radius cut

 CellCut = 2 (dflt = 2): Max number of adjacent cells to investigate on each side of the cell expected to have a hit.

 CellCut = 10 (dflt = 10): Minimum number of hit planes

 FindEff = F (dflt = .FALSE.): Calculate chamber efficiency

 MOFIA> show name timezero

 NameList TimeZero: T0 fit settings

 T0_TDC_MIN (def = 3000.) = 3000.0 Min range for TDC spectra rising time

 T0_TDC_MAX (def = 3080.) = 3080.0 Max range for TDC spectra rising time

 TDCnsPerBin (def = 0.5) = 0.5 Number of bins per channel

 FitT0 (def = FALSE) = F Accumulate histograms for fitting T0 spectra

 TimeBackwards (def = TRUE) = T Time increases backwards

 TriggerTimeDC = 0.0

 TriggerTimePC = 0.0

 TriggerTimeSC = 0.0

 TCAP Cut Low Time = -1.0

 TCAP Cut High Time = -1.0

 MOFIA> show name rezs

 Namelist REZS: Resolutions

 nEventsMax = 5000 (dflt = 5000): # Events per Resolution Iteration

 MinHistFitEntries = 1000 (dflt = 1000): # histogram entries necessary to do fit

 nResidualBins = 300 (dflt = 300): # Bins in residual histograms.

 MinResidualValue = 0.30 (dflt = -0.3): Min histogram channel (cm).

 MaxResidualValue = 0.00 (dflt = 0.3): Max histogram channel (cm).

 PLEASE do NOT mess with the histogram definitions without THINKING about the consequences. See
resolution_mod

for details

 calcResidualMethod = *** (dflt = 3): Residual calculation method.

 1=> Gaussian Fit to residual histograms.

 2=> SquaredSum calculation.

September 15, 2003 42

 3=> FWHM calculation.

 peakTOL =

MOFIA> show name sccuts

 NameList SCCUTS: SCintillator CUTS

 S1_MAX_NHITS = -1 (dflt = -1, OFF): Scint 1 max number of hits cut

 S2_MAX_NHITS = -1 (dflt = -1, OFF): Scint 2 max number of hits cut

 S3_MAX_NHITS = -1 (dflt = -1, OFF): Scint 3 max number of hits cut

 S1_WIDTH_CUT = -1.00 (dflt = -1, OFF): Scint 1 peak width cut

 S2_WIDTH_CUT = -1.00 (dflt = -1, OFF): Scint 2 peak width cut

 S3_WIDTH_CUT = -1.00 (dflt = -1, OFF): Scint 2 peak width cut

 S1_MAX_TDC = ******* (dflt = -1, OFF): Scint 3 peak width cut

 S2_MAX_TDC = ******* (dflt = -1, OFF): Scint 1 max TDC channel cut

 S3_MAX_TDC = 2500.00 (dflt = -1, OFF): Scint 2 max TDC channel cut

 S1_MIN_TDC = -1.00 (dflt = -1, OFF): Scint 1 min TDC channel cut

 S2_MIN_TDC = -1.00 (dflt = -1, OFF): Scint 2 min TDC channel cut

 S3_MIN_TDC = -1.00 (dflt = -1, OFF): Scint 2 min TDC channel cut

 S1_MAX_ADC = 5000.00 (dflt = -1, OFF): Scint 1 max ADC channel cut

 S2_MAX_ADC = 5000.00 (dflt = -1, OFF): Scint 2 max ADC channel cut

 S1_MIN_ADC = -1.00 (dflt = -1, OFF): Scint 1 min ADC channel cut

 S2_MIN_ADC = -1.00 (dflt = -1, OFF): Scint 2 min ADC channel cut

MOFIA> show name rfcuts

 NameList RFCUTS: RF CUTS

 RF_MIN_TDC = -1.00 (dflt = -1, OFF) : RF min TDC cut

 RF_MAX_TDC = -1.00 (dflt = -1, OFF) : RF max TDC cut

MOFIA> show name strset

 use_cos_increments (def= T) T str_angle_inc (def= 0.05) 5.000000E-02

str_upper_angle_limit (def= 85. degrees) 85.0000

 MOFIA> show name FirstGuess

 NameList FirstGuess: First Guess parameters

enableFirstGuess = T (logical: T or F)

enableFirstGuessNtuple = F (logical: T or F)

 NameList FirstGuess: Time separation between windows

winPCthreshold = 500.000 (ns)

September 15, 2003 43

 NameList FirstGuess: DC window start

winDCstart = -100.000 (ns)

 NameList FirstGuess: DC window end

winDCend = 1000.000 (ns)

 MOFIA> show name HelixFit

 NameList HelixFit: HelixFit parameters

enableHelixFit= T

enableHelixNtuple= F

HelixFitVerbose= 0

HelixFitDPDS= 0.000000 energy loss, (MeV/cm)

HelixFitStartFG, StartMC= T F

HelixFitUpstream, HelixFitDownstream= T T

HelixFitCosTmin, HelixFitCosTmax= 0.0100 1.1000

HelixFitWireRes, HelixFitDriftRes, HelixFitTimeRes= 0.1600 0.0300 50.0

HelixFitCutWC, CutDrift, CutTime, CutTref, CutFit= -1.0000 -1.0000 -1.0000 0.0500 0.0200

HelixFitMaxIter= 20

 MOFIA> Show name KalmanCuts

 NameList KalmanCuts: Kalman tracking cuts

 ChiDiffCluster (def = 1.E-02) = 0.10E-01 Chi2 convergence level for cluster iteration

 ChiDiffTime (def = 1.E-04) = 0.10E-03 Chi2 convergence level for timing iteration

 Chi2sCutCluster (def = 1.E05) = 0.10E+06 Chi2 cut for cluster iteration

 Chi2sCutTime (def = 1.E05) = 0.10E+06 Chi2 cut for timing iteration

 MaxIterateCluster (def = 50) = 50 Maximum number of iterations for cluster fit

 MaxIterateTime (def = 50) = 50 Maximum number of iterations for timing fit

 EnableKalman (def = TRUE) = T Execute Kalman filterng code

 SwitchLR = (def = TRUE) = T Attempt reducing the value of Chi2 by switching left and right

NoiseExcludeMax (def = 2) =

MOFIA> show name photo

 NameList PHOTO: PHOTO FLAGS

 IPIC = 1 (dflt = 1) : Chooses priority PHOTO view

 HARD = F (dflt = F) : Set TRUE for automatic PHOTO hardcopy

 EDGR = F (dflt = F) : Set TRUE to invoke EDGR picture editor

 PRINTER = 2 (dflt = 2) : Printer is one of Printronix, HPLaser HPThinkJet, La100, HPPaintJet

 DURATION = 0.0 (dflt=0.0) : duration of automatic photos

September 15, 2003 44

 DETAIL = 0 (dflt = 0) : number of times to automatically add detail to photo

 SHOW_COORD = F (dflt = F) : Set TRUE to display counter coordinates

 DRAWFOILS = T (dflt = T) : Set TRUE to display UTC superlayer boundaries

 TrackedOnly = F (dflt = F) : IF TRUE skip events with no tracks

 MOFIA> show name qod

 n_QOD_buffers (def = 4) 4 qod bufferlength (def =10000) 10000 short term warning message prob

 1.000000E-03 long term warning message prob 1.000000E-04 Ratio of hot wire counts to base wire counts
5.00000 baseline

filename (default)

 Gives DC wire occupancies, INCLUDING all multiple hits.Set the variable to the plane number you'd like to see.
0 (Default = 0, no hist)

MOFIA> show name scflags

 NameList SCFLAGS: SCintillator FLAGS

 S1_signal = T (dflt = TRUE) : Require a signal in S1

 S2_signal = T (dflt = TRUE) : Require a signal in S2

 S3_signal = T (dflt = TRUE) : Require a signal in S3

September 15, 2003 45

X.2 Failure Codes

X.2.1 Event Filtering Failure Codes

Failure
Code Description Associated

Namelist

1 successful unpacking

2 at least one DC hit present

3 there is less than S1_MAX_NHITS in scint 1 SCCUTS

4 there is less than S2_MAX_NHITS in scint 2 SCCUTS

5 require a signal in scint 1 SCCUTS

6 require a signal in scint 2 SCCUTS

7

8

9 time from scint 1 is close to its peak location SCCUTS

10 time from scint 2 is close to its peak location SCCUTS

11 number of hits in DC plane is less than DC_MAX_HITS_IN_PLANE DCCUTS

12 require the numbr of DC hits in each plane to be less than DC_MIN_PLANES DCCUTS

13 require the total number of DC hits to be less than DCmaxAllowedHits DCCUTS

14 number of hits in PC plane is less than PC_MAX_HITS_IN_PLANE PCCUTS

15 require the numbr of PC hits in each plane to be less than PC_MIN_PLANES PCCUTS

16 require the RF time to be within the range [RF_MIN_TDC,RF_MAX_TDC] RFCUTS

17 require the total number of PC hits to be less than PCmaxAllowedHits PCCUTS

18 there is less than S3_MAX_NHITS in scint 3 SCCUTS

19 require a signal in scint 3 SCCUTS

20 time from scint 3 is close to its peak location SCCUTS

Table 7 Event filtering failure codes.

September 15, 2003 46

X.2.2 Pattern recognition Failure Codes

Failure
Code

Description Namelist

1 track > MaxTmpTracks in InsertCluster

2 iPair = PrevPair(iFGTrack) in InsertCluster

3 FGCl(iFGTrack) % nCl >= MaxPairs in InsertCluster

4 Cluster does not fit circle in InsertCluster

5 Less than three clusters in ResolveCircle

6 ChiSquare unacceptably large in ResolveCircle

7 nRows in matrices A and B are unequal in MatSolv (Matrix_mod)

8 Unique solution does not exist for matrix equation in MatSolv (Matrix_mod)

9 0 row in matrix in Triangulate (Matrix_mod)

10 Failed to find pivot in Triangulate (Matrix_mod)

11 ChiSquare unacceptably large in ResolvePhiLambda

12 ChiSquare unacceptably large in ResolvePhiLambda

Table 8 Pattern recognition failure codes.

September 15, 2003 47

X.2.3 χ2 Fit Failure codes

X.2.4 Kalman Filtering Failure Codes

Failure Code Description Namelist

1 Not enough hits for tracking

2 Filter failed in cluster fit

3 Smoother failed in cluster fit

4 Bad track Chi2 – cluster iteration

5 Failed computing hit position

6 Filter failed in timing fit

7 Smoother failed in timing fit

8 Bad tracking Chi2 - timing iteration

9 Failed computing physics paramters

Table 9 Kalman filter failure codes.

September 15, 2003 48

X.3 Data Structures

X.3.1 Geometry Structures

dir
i4

stream
i4

minwire
i4

maxwire
i4

nwires
i4

iPlane
i4

z
r4

shift
r4

rotation
r4

wireSpacing
r4

centre(3)
r4

radius
r4

FullyInstrumented
Logical

wvector
r8(3)

nvector
r8(3)

mvector
r8(3)

plane_type
chambers_mod
DCplane (iplane)
PCplane (iplane)

u
i4

v
i4

dir_type
chambers_mod

dir public

u
r4

v
r4

z
r4

point3_type
chambers_mod
bottom private

centre private, top private

up
i4

down
i4

stream_type
chambers_mod
stream public

September 15, 2003 49

u
r4

v
r4

z
r4

centre
point3_type

sctype
Character

shift
r4

inner_rad
r4

outer_rad
r4

thickness
r4

iscint
i4

stream
i4

scint_type
chambers_mod

SCdisk(MAX_SCINTS,1)

u
r4

v
r4

z
r4

bottom
point3_type

u
r4

v
r4

z
r4

centre
point3_type

u
r4

v
r4

z
r4

top
point3_type

iWire
i4

t0
r4

planeP
pointer to plane_type

nMXd_wires
i4

wires
i4(MAX_MULTIPLEXING)

wire_type
chambers_mod

DCwire (iplane, iwire)
PCwire (iplane, iwire)

September 15, 2003 50

X.3.2 TDC Structures

time
r4

width
r4

flag
i4

wireP
pointer to wire_type

whitsP
pointer to Whits_type

tdc_type
tdc_mod

DCtdc (ihit)
PCtdc (ihit)

nhits
i4

hits (kMaxHitsPerWIre)
i4

iwire
i4

Whits_type
tdc_mod

DCWhits (iplane,wire_index)
PCWhits (iplane,wire_index)

time
i4

width
i4

plane
i4

wire
i4

slot
i4

channel
i4

flag
i4

tdcraw_type
tdc_mod

September 15, 2003 51

flag
i4

whitsP
pointer to whits_type

scintP
pointer to scint_type

time
r4

width
r4

tdc_SC_type
tdc_mod

whitsP
pointer to whits_type

scintP
pointer to scint_type

e_lost
r4

adc_SC_type
tdc_mod

September 15, 2003 52

X.3.3 Calibrations Structures

UVshift
r4

rotation
r4

Zshift
r4

corrections_type
calibrations_mod

dcplane_corr(MAX_PLANES_D), dcwire_corr(MAX_PLANES_D, MAX_WIRES_D)
pcplane_corr(MAX_PLANES_P), pcwire_corr(MAX_PLANES_P, MAX_WIRES_P)

e_conversion
r4

pedestal
r4

adc_calib_type
calibrations_mod

PC_adc_calib(MAX_PLANES_P, MAX_WIRES_P)
SC_acd_calib(MAX_SCINTS,1)

time
r4

sigma
r4

frac
r4

T0_type
calibrations_mod

DC_T0(MAX_PLANES_D, MAX_WIRES_D)
PC_T0(MAX_PLANES_P, MAX_WIRES_P), SC_T0(MAX_SCINTS,1)

September 15, 2003 53

X.3.4 Windowing Structures

DCWhits
whits_type

PCWhits
whits_type

t0
r4

tstart
r4

dE
r4

tend
r4

nTrack
i4

numDChits
i4

numPChits
i4

PC_Nphits
i4(max_planes_p)

DC_Nphits
i4(max_planes_d)

Pid
Character(1)

analyze
Logical

overlap
Logical

window_type
windows_mod

DCWhits (iplane,wire_index)
PCWhits (iplane,wire_index)

September 15, 2003 54

X.3.5 Clustering Structures

uMin
i4

uMax
i4

vMin
i4

vMax
i4

uBar
r4

vBar
r4

area
r4

nuHits
i4

nvHits
i4

iTrack
i4

uHit
i4

vHit
i4

coord_type
clustering_mod
Coord private

cCl
i4

nuCl
i4

nvCl
i4

uPlane
i4

vPlane
i4

IsDCCluster
Logical

Coord
coord_type(MaxClPerPr)

wFactor
r4

cluster_type
clustering_mod

DCCl (MaxWindows, max_planes_d/2)
PCCl (MaxWindows, max_planes_p/2)

September 15, 2003 55

X.3.6 First Guess Structures

nCl
i4

nPlaneCl
i4

WindDir
i4

CirStuff
Logical

PhiStuff
Logical

DenseSol
Logical

Dense
Logical

Dim:(max_planes_d/2
+max_planes_p/2)

Crd
coordP_type

Dim:(max_planes_d/2
+max_planes_p/2)

Phi
r4

Dim:(max_planes_d/2
+max_planes_p/2)

CirChi
r4

Chi
r4

FGcluster_type
firstguess_mod

TGCl,BestCl(MaxWindows*MaxWintracks)
Pointer::FGD

nDChits
i4

DCHit(MaxDCTrackHits)
i4

iwindow
i4

Dir
i4

nPChits
i4

PCHit(MaxPCTrackHits)
i4

charge
i4

aPar(7)
r8

fgresult_type
track_mod

Track (MaxTracks)
MCTrack(MaxTracks)

Par
r4(3)

Chi
r4

cir_type
firstguess_mod

P
pointer to coord_type

iPair
i4

coordP_type
firstguess_mod

Crd private

September 15, 2003 56

X.3.7χ2 Helix Fit Structures

tdc
r8

wireCenter(3)
r8

wireDir(3)
r8

dctdcindex
i4

dcplane
i4

dcwire
i4

hit_type
helixfit_mod

planeZ(kMaxPlanes)
r8

 planeDir(kMaxPlanes,3)
r8

numhits
i4

nhits(kMaxPlanes)
i4

rindex(kMaxPlanes,kMaxHitsPerPlane)
i4

firstplane
i4

lastplane
i4

planestep
i4

chits
hit_type

hits_type
helixfit_mod

September 15, 2003 57

X.3.8 Kalman Filter Structures

U
r4

V
r4

Z
r4

angle
r4

sigma2
r4

plane
i4

wire
i4

iTrack
i4

PU
r4

PV
r4

PZ
r4

geantTof
r4

radius
r4

time LCR
Character(1)

dense
Logical

exclude
Logical

params
r4(5)

HitPos_type
hitpos_struct_mod

plane
i4

LCR
Character(1)

resolved
Logical

exclude
Logical

LeftRight_type
LeftRight_mod

SquaredSum

r4
sigm
r4

su
r

cou
i4

Resid_type
residuals m

X
r4D(5,

C
r4D(5,

KalSubtract_type

 residuals m

September 15, 2003 58

Xp
r4(5,1)

Xf
r4(5,1)

Xs
r4(5,1)

Cp
r4(5,5)

Cf
r4(5,5)

Cs
r4(5,5)

Ft
r4(5,5)

Xm
r4(2,1)

Vcov
r4(2,2)

Hm
r4(2,5)

Chi2s
r4(1,1)

KalHit_type
kalman_mod

nDChits
i4

nPChits
i4

pID
i4

WinID
i4

par(5)
r4

ChiSqr
r4

Z
r4

Pol
r4

t0
r4

USorDS
Character(1)

track_type
track_mod

Track (MaxTracks)
MCTrack(MaxTracks)

September 15, 2003 59

X.3.9 MC Banks Structures

pod(kMaxMCSP, 3)
r8

mom(kMaxMCSP, 3)
r8

nummcsp
i4

itrack(kMAxMCSP)
i4

iplane(lMaxMCSP)
i4

iwire(kMaxMCSP)
i4

mcsp_type
unpmc_mod

mscp

V(3)
r8

P(3)
r8

t
r8

Q
i4

mctrack_type
unpmc_mod

fMcTracks(kMAxMcTracks)

September 15, 2003 60

X.4 Flowcharts

X.4.1 Initialization Branch

ReadDetGeom
read geometry data file

OpenGeom
open geometry input file

det_geom_mod

ReadPlaneCorrUV
read plane UV position

corrections

ReadWireCorrUV
read wire UV position

corrections

ReadPlaneCorrZ
read plane Z position

corrections

ReadWireCorrZ
read wire Z position

corrections

ReadPlaneRot
read plane rotation

corrections

ReadWireRot
read wire rotation

corrections

ReadSTR
read drift chamber

STR

ReadCalibFiles
read calibration files
calibrations_mod

SetupDCPlanes
setup drift chamber

planes

SetupDCWires
setup drift chamber

wires

SetupPCPlanes
setup prop chamber

planes

SetupPCWires
setup prop chamber

wires

SetupChambers
setup the chambers

chambers_mod

begin_run
calibrations and geometry

DefineRawHists
1-5000

DefineHists
5001-10000

DefinePatternHists
10001-15000

DefineFirstGuessHists
15001-20000

DefineTrackHists
20001-25000

DefinePhysicsHists
25001-30000

DefineXtalkHists
30001-35000

DefineMainHists
hists_mod

uDefineRawHists
>50000

uDefineHists
>50000

uDefinePatternHists
>50000

uDefineFirstGuessHists
>50000

uDefineTrackHists
>50000

uDefinePhysicsHists
50000

DefineUserHists
user_hists_mod

define_hists
histogramming

analyze

analc

interpret

mofia

September 15, 2003 61

X.4.2 Analysis Branch

tdcmap_read
read TDC map file

(1) tdcunp
unpack the TDCs

tdc_mod

(2) FillRawHists
fill histograms before filtering

hists_mod

(3) uFillRawHists
fill user histograms before filtering

user_hists_mod

(4) FilterEvent
filter the event

filters_mod

(5) FillHists
fill histograms after filtering

hists_mod

(6) uFillHists
fill user histograms after filtering

user_hists_mod

(7) AnalyzeXtalk
cross talk analysis

xtalk_mod

(8) Pattern
pattern recognition analysis

pattern_mod

(9) Windowing
time sorting

window_mod

(10) Tracking
track fitting

tracking_mod

dplot
E614 event analysis subroutine

analc

analyze

interpret

mofia

