1 Software design specification

This section describes the data corrections code design and implementation, including how the data corrections interact with the analysis software, a brief description of the major classes and their functionalities, and flow charts describing how the data corrections are performed.

1.1 Interaction of the data corrections code with the analysis software

The purpose of this project is to use continuous head localization (CHL) to correct MEG data by removing the effects of head motion. The method relies on approximating the brain sources with a spherical harmonic series whose coefficients are determined through a minimum-norm analysis.
The algorithm used for the data corrections is a stand alone program that the user has the option to use. The mechanisms involved in acquiring MEG data and creating a dataset remain unchanged. Once the dataset is created, the user has the option of correcting this dataset by applying the data corrections program “correctHeadMotionDs”. This program will read in the dataset, apply the data corrections algorithm, and create a new dataset containing the corrected signals, as shown in Figure 1.

[image: image1]
Figure 1. Interaction of the data corrections code with the analysis software.

To run the program in default mode, the user has to simply specify an input dataset and an output dataset in the format:
correctHeadMotionDs input_set output_set
Apart from having the MEG signals corrected for head motion, the output dataset is equivalent to the input dataset, and can be used in the same way as the original dataset for all analysis purposes (for example, source localization using a dipole fit or Synthetic Aperture Magnetometry). However, in cases of significant head motion, using the new dataset for source localization purposes would yield more accurate results.
1.2 The major data corrections classes

The data corrections classes are composed of a high-level manager, DC_Manager, which in turn handles all interactions with all other data corrections classes. This class is constructed from the main data corrections program, correctHeadMotionDs, and in turn constructs all other data corrections classes as shown schematically in figure 2. The main classes managed by DC_Manager are: DC_BackwardMatrix, DC_RotationMatrix, DC_TranslationMatrix, and DC_ForwardMatrix. Below is a brief description of each.

1. DC_BackwardMatrix: the backward matrix, Q, is a transformation matrix that allows the computation of the spherical harmonic coefficients which approximate the brain sources given the measured MEG signals. That is, given a vector of MEG signals, B, the vector of spherical harmonic coefficients, A, is obtained by applying the backward matrix in the form

A = QB
where B contains m elements each element corresponding to a MEG signal, and A contains n elements each element corresponding to a spherical harmonic coefficient in the expansion series. The matrix Q is therefore a 2 dimensional matrix of size n×m.
2. DC_RotationMatrix: the rotation matrix, R, is a transformation matrix which, given a set of Euler angles, allows rotating the spherical harmonics. The Euler angles are computed from the head coil positions, and are an input to this algorithm.

3. DC_TranslationMatrix: the translation matrix, T, is a transformation matrix which, given a translation vector, allows translating the spherical harmonics. The transformation vector is computed from the head coil positions, and is an input to this algorithm.

4. DC_ForwardMatrix: the forward matrix, L, is a transformation matrix that allows the computation of the MEG signals from the sources approximated by the spherical harmonic series. That is, given the vector of spherical harmonic coefficients, A, the vector of MEG signals, B´, can be computed by appling the forward matrix in the form
B´=LA
1.3 The constructors

In order to save CPU time all calculations that are sample independent are performed in the constructors and saved for later use. These calculations include the forward matrix and the backward matrix, both of which are only dependent on the geometry of the system. Although the rotation and translation matrices are sample dependent (since they require knowledge of the head position corresponding to the sample), some of the calculations involved can be pre-calculated and are therefore performed in the constructors. The DC_Manger class is constructed by correctHeadMotionDs, and in turn constructs the remaining classes.
1.4 Flow of the main program, correctHeadMotionDs
The data corrections main program, correctHeadMotionDs, starts by reading in the dataset to be corrected and creating a new empty dataset. Since only the MEG signals are corrected for head motion, all other non MEG-channels (EEG channels, head coil channels, etc) are first saved to the new dataset. The program then loops over all the time series sample by sample, creates an array containing only MEG channels from each sample, and sends the array to DC_Manager which corrects the signals and sends the array back to correctHeadMotionDs. Once all samples are corrected, they are written to the new dataset and the process is completed. Figure 3 is a flowchart of this process.

[image: image2]Figure 3. Flowchart for the main data corrections program, correctHeadMotionDs.

1.5 Flow of the data corrections manager class, DC_Manager
As described above, the class DC_Manager handles all interaction between the main program, correctHeadMotionDs, and all the other data corrections classes. Figure 3 shows a flowchart of DC_Manager. The array of MEG channels and the head-coil positions for each sample are sent to DC_Manager by correctHeadMotionDs. DC_Manager then calls the appropriate functions to convert the head coil postions to rotaion angles (Euler angles) and a translation vector. The rotation matrix, R, and translation matrix, T, are then calculated, and combined with the forward matrix, L, and backward matrix, Q. The resulting transformation matrix formed from the product, LRTQ, is then applied to the vector of MEG signals, B, and the new corrected vector, B´, is returned to correctHeadMotionDs.

[image: image3]
Figure 4. Flow chart describing the data corrections high-level manager class, DC_Manager.

Analysis

(dipole fit, SAM, etc.)

output

dataset

correctHeadMotionDs

head coil positions

(from CHL)

input

dataset

Acq

(data acquisition)

next

sample

save corrected MEG channels to new dataset

send to DC_Manager to correct signals

create array of MEG signals for current sample

save non-MEG channels to new dataset

create new empty dataset

read in the dataset

apply the transformation matrix to the MEG signals

calculate the transformation matrix

(LRTQ)

calculate rotation & translation matrices

(R & T)

convert coil positions to rotation angles and

a translation vector

head coil positions

for current sample

MEG channel array

for current sample

DC_Manager

DC_TranslationMatrix

(create the translation

matrix, T)

DC_RotationMatrix

(create the rotation

matrix, R)

DC_BackwardMatrix

(create the backward

matrix, Q)

DC_ForwardMatrix

(create the forward

matrix, L)

DC_Manager

(data corrections manager)

Figure � SEQ Figure * ARABIC �2�. Data corrections classes and their hierarchy.

1

